Rózsa Balázs és kutatócsoportja közvetlenül vizsgálja kísérleti állatok agyának látásért felelős területét, vagyis a látókérget a Magyar Tudományos Akadémia Kísérleti Orvostudományi Kutatóintézetében. Kísérleteik célja, hogy megfejtsék, miként jelenik meg a szem által érzékelt világ az agyi ideghálózatok aktivitásmintázataiban. Az itt kapott eredmények tudományos alapot szolgáltathatnak olyan berendezések fejlesztéséhez, melyek bizonyos mértékben visszaadhatják a látásélményt azok számára, akik vakságát a retina vagy akár a látóideg sérülése okozza.
Az utóbbi bő egy évtized több olyan új eszközt adott a kutatók kezébe, melyek lehetővé teszik élő sejtek működésének megfigyelését és módosítását. E forradalmian új módszerek az optogenetika egészen fiatal – azonban már Nobel-díjjal is elismert – tudományterületéről érkeztek. Az eljárások lényege, hogy genetikai módosítással fényérzékeny, illetve fénykibocsátásra alkalmas fehérjéket juttatnak be a kísérleti állatok sejtjeibe, majd ezek működését egy lézerrendszerrel, valamint egy ehhez csatlakozó mikroszkóppal vizsgálják és befolyásolják.A magyar kutatás kiemelt helyen szerepel az Európai Kutatási Tanács (European Research Council, ERC) támogatott projektjei között, amit a lehetséges hosszú távú orvosi felhasználás mellett az indokol, hogy a kutatócsoport által fejlesztett lézerrendszerrel összekötött mikroszkóp több téren is messze túlmutat elődei képességein: egy univerzális agykutató eszközt bocsát majd a tudományos közösség rendelkezésére. Az itt kifejlesztett rendszer használható lesz emberi implantátumok működésének szimulálására, így tökéletesítésükre is, de a technológia folyamatos miniatürizálásával akár egy hordozható mikroszkóp is kifejleszthető lesz, amelyet „kalapként” lehet majd viselni. Magyarország egyébként 2015-ben is jól szerepelt a régióban a nyertes ERC-pályázatok számát tekintve: Rózsa Balázs Consolidator Grantjén kívül három Starting Grantet nyertek el magyar kutatók.
Rózsa Balázsék mikroszkópja egy teljesen új konstrukció, amely kihasználja a háromdimenziós leképezés előnyeit, több nagyságrenddel növeli az egyszerre vizsgálható sejtek számát és a vizsgálható térfogatot, továbbá a mérési sebességet. Emellett képes kompenzálni az élő szövet belső mozgásait, akár szuperrezolúciós feloldást biztosítva a viselkedő, gondolkodó állatok mozgó agyának méréséhez. Segítségével lehetővé válik, hogy a videofelvételek képsebességével mérjék és módosítsák a sejtek működését. A projekt létrejöttéhez és sikeréhez számos nemzetközi együttműködés járult hozzá, melyek közül kiemelendő a Roska Botond és Hillier Dániel svájci kutatókkal sok éve sikeresen folyó közös munka. Ez a kutatócsoport ma élen jár a későbbiekben akár a módszer emberi alkalmazását is lehetővé tévő genetikai technológiák fejlesztésében. A projektben Katona Gergely a Pázmány Péter Katolikus Egyetemen létrejött kutatócsoportja (a Nemzeti Agykutatási Program támogatásával), a Femtonics Kft. és a Bionikai Innovációs Központ is működik közre.
Az eredeti, bővebb ismeretterjesztő cikk az mta.hu-n jelent meg, itt olvasható: http://mta.hu/tudomany_hirei/agyukkal-lato-egerek-hozhatjak-el-a-matrix-vilagat-106141